13.Nuclei
medium

If radius of the $^{27}_{13}Al$ nucleus is taken to be $R_{Al}$, then the radius of $^{125}_{53}Te$ nucleus is nearly

A

${\left( {\frac{{53}}{{13}}} \right)^{\frac{1}{3}}}{R_{Al}}$

B

$\frac{5}{3}{R_{Al}}$

C

$\;\frac{3}{5}{R_{Al}}$

D

$\;{\left( {\frac{{13}}{{53}}} \right)^{\frac{1}{3}}}{R_{Al}}$

(AIPMT-2015) (AIPMT-1990)

Solution

Radius of the nucleus  $R\,=\,R_{0} A^{1 / 3}$

$\therefore$  $\frac{R_{\mathrm{Al}}}{R_{\mathrm{Te}}}=\left(\frac{A_{\mathrm{Al}}}{A_{\mathrm{Te}}}\right)^{1 / 3}$

Here , $A_{\mathrm{Al}} =27, A_{\mathrm{Te}}=125, R_{\mathrm{Te}}=? $

$\frac{R_{\mathrm{Al}}}{R_{\mathrm{Te}}}=\left(\frac{27}{125}\right)^{1 / 3}=\frac{3}{5} \Rightarrow \quad R_{\mathrm{Te}}=\frac{5}{3} R_{\mathrm{Al}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.